
Imperial College London

Department of Mathematics
Applied Mathematics MSc Project

Information-theoretic analysis of

EEG from a musical performance

Author:
Joshua Southern

Supervisor:
Prof. Henrik Jensen

September 14, 2018

College Identi�er: 01430811



Declaration of own work

The work contained in this thesis is my own work unless otherwise stated.

Signature: Joshua Southern

1



Abstract

This project is motivated by EEG measurements taken from musicians
and the audience during a performance of classical music. The measure-
ments are taken during both improvisation and non-improvisation states.
The aim of this study is to use the recently developed causality measure,
partial mutual information with mixed embedding (PMIME), to construct a
cross-brain network between the people in the concert and then to identify
di�erences in community structure between the two di�erent states of per-
formance. This was supplemented by a complexity analysis on the signals at
individual electrodes, so that both local and macro di�erences in brain func-
tion between the modes of playing were explored. For the complexity analy-
sis, permutation Lempel-Ziv was used as a measure to complement previous
work done using ordinary Lempel-Ziv complexity. In both our complexity
analysis and our causality-network analysis, we have found neuronal dif-
ferences between the musicians improvising and when they are playing a
mechanical rendition of music. The di�erences can be di�cult to interpret,
but there is a quanti�able di�erence in the information �ow in the whole
system of people, information �ow between musicians and the local com-
plexity of signals at electrodes.
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1 Introduction

1.1 The brain as a complex system

A complex system is most often de�ned as a system containing a large
number of interacting components, which produce emergent structures
whose evolution is very sensitive to initial conditions [26]. There is a
consensus that the brain is one such complex system [37] - the neurons
are the individual components and they interact giving rise to emergent
properties such as consciousness [5]. It has been found that some neu-
rons have increased interaction with particular others depending on the
performed function [9][37] and so it is believed that the brain can be de-
composed into functional parts [13]. Instead of analyzing the interac-
tion of individual neurons, we can gain an understanding of the brain by
understanding the functional parts and how these di�erent components
cooperate to perform cognitive tasks. This is very di�cult given that dif-
ferent parts of the brain are activated at di�erent times whilst it also ap-
pears as if information is reaching all neurons at all times. Fortunately,
advances in technology have given us the opportunity to analyze brain ac-
tivity. Neuroimaging techniques such as functional magnetic resonance
imaging (fMRI); single-photon emission computed tomography (SPECT)
and positron emission tomography (PET) are often used to visualize brain
activity. However, although these techniques often produce useful and
clear images as well as having a good spatial resolution, they su�er from
a slow temporal resolution [6]. This is not so useful if we are wanting to
understand cooperation in the brain at neuronal timescales. One method
that can be used to trace the information �ow in the brain at such a high
temporal resolution is an Electroencephalograph (EEG). An EEG was �rst
demonstrated by Hans Berger in 1924 to measure human brain waves
[40]. Electrodes are placed at positions around the scalp and the electrical
activity is measured at each electrode and then grounded to a reference
electrode. As well as being non-invasive and relatively cheap compared
to other neuroimaging techniques, the temporal resolution of the EEG is
of the order milliseconds, similar to what we believe to be the neuronal
timescale [18]. If we can spatially isolate functional parts of the brain with
an electrode, then at a neuronal timescale we can hopefully understand
functional processes from the electrical activity at that electrode. From
the EEG we can also map a �ow of information between di�erent func-
tional parts by quantifying the interactions between the di�erent time-
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series of electrical activity. Describing this �ow of information between
functional parts of the brain as well as understanding the local electrical
activity could lead to an understanding of both the brain and other com-
plex systems, and how emergent properties arise through small-scale co-
operation. Previously, work has been done modeling intra-brain informa-
tion �ow with the study on relating intelligence to the magnitude of causal
drivers in an EEG [38], and with an examination of information �ow in an
EEG to distinguish human awake, meditation and drowsiness states [11].
Rather than just looking at one EEG and understanding how information
�ows through the brain, this thesis explores the use of a causality analysis
to describe information �ow between electrodes in multiple EEGs of dif-
ferent people during a musical performance. Hopefully, some insight will
be gained on the intra and cross-brain interactions between musicians
and audience members. Additionally, a complexity analysis to quantify
the activity at local electrodes will be done. The extent to which these
analyses can distinguish between di�erent neural activities is looked at
by trying to di�erentiate EEG data recorded when the musicians play a
mechanical rendition of music, a so-called strict mode, and a let-go mode,
where the musicians are improvising. This will perhaps give some insight
into the brain’s complex behavior and how it operates in di�erent modes,
as well as how people interact during a concert.

1.2 Music and the brain

Previously, there have been a large number of studies looking at the com-
plex behavior of the brain during musical performance due to music’s
natural relevance to cognition, and the fact that it provides an intimate
relationship between production, perception, experience and emotion [7].
An fMRI study was done on performance in pianists [25], a study on
beat perception has been undertaken [22], and a study on musical mem-
ory has been done, [14] along with many others. Recently, some re-
search has also looked into the e�ect of improvisation, one of the most
complex forms of creative behavior. An improvising musician faces the
unique challenge of managing several processes all at once; generating
and evaluating melodic and rhythmic sequences; executing �ne-motor
movements and co-ordinating performance with other musicians in the
ensemble - all with the overall goal of creating aesthetically appealing
music. Understanding improvisation is not only relevant to the psychol-
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ogy of music, but also to the psychology of creativity, and how acquired
expertise shapes brain structure and function [3]. A majority of studies
looking at the e�ects of musical performance and improvisation on the
brain have focused on �nding brain regions which are most activated.
For instance, in an fMRI study of melodic and rhythmic improvisation
[30], results show that the dorsal premotor cortex is mainly responsible
for melodic improvisation, while the pre-supplementary motor area is re-
lated to rhythmic improvisation. In a PHD thesis by Xiaogeng Wan, infor-
mation �ow is explored in EEG data taken from musicians and audience
members during an improvised performance and a mechanical rendition
of music [43]. Rather than look at sites with a high activation, a network
of interactions was constructed between electrodes in the EEG and sites
that had a high degree centrality were noted, i.e. sites that were important
in the �ow of information. Additionally, cross-brain networks were cre-
ated to understand information �ow between musicians and also with the
audience. Not only does this give insight into a musicians creative cog-
nition but also how musicians co-ordinate during improvisation and the
audiences shared experience with the performers. Alike with this thesis,
I shall explore cross-brain networks. However, rather than look at mean-
ingful brain regions for information �ow or highly activated areas, I will
look at community structure between brain regions in both musicians and
the audience shedding light on the ‘connectedness’ of the group.

1.3 Structure of the thesis

In this thesis, I shall use the information based causality measure called
partial mutual information with mixed embedding (PMIME) in order to
construct a cross-brain directed network of information �ow from EEG
data. This EEG data is taken from musicians and audience members dur-
ing a musical performance where there is both a strict and a let-go mode.
Community detection will then be employed to try and quantify the dif-
ference in network structure between the two modes. Additionally, I will
use a complexity measure to try and quantify the local process at an elec-
trode and see if this is able to di�erentiate between the two modes. As well
as supplement the growing research area exploring musical performance
and the brain, the general analysis used in this thesis can be extended
to any complex system containing multivariate time-series. Chapter 2
will give a general overview of this process - Interactions between mul-
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tivariate time-series are quanti�ed and then this information is used to
construct a network to represent the complex system.

Chapters 3 and 4 provide the mathematical background to the causality
and network analysis I use on the EEG measurements. This requires some
basic information and network theory.

Chapter 5 gives the background necessary for the permutation Lempel-
Ziv measure which I use in the complexity analysis.

Chapter 6 then outlines the practical aspects of my analysis on the EEG
data as well as the obtained results. A discussion of these results as well
as any potential future work is also given.
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2 Understanding complex systems

2.1 From time-series to interactions

Today, large datasets of multivariate time series exist in �elds such as
physiology, genetics, meteorology and �nance; representing complex sys-
tems such as the climate, human body, the genome and the global econ-
omy. We are often interested in interactions between these time-series.
We may want to understand the coupling mechanism between two sub-
processes, or the interactions between multiple subprocesses in order to
identify how a complex interaction mechanism is mediated. Connections
between time-series in these systems are directed, as there is a transfer
of information. For instance, the interaction of two stock prices in the
FTSE 100 at a particular time would imply that one price has an e�ect on
the other. The most basic approach, and the most common, to quantify
interactions is to estimate all Pearson correlations at lag zero between
each pair of time-series. This has been done by Tsonis and Roebber in
studying the architecture of the climate [39], Onnela et al for quantifying
interactions between �nancial companies [27] and many others wanting
to understand interactions between a pair of agents in a complex system.
However, this measure signi�es that the interactions are instantaneous
and thus they cannot be interpreted in a directional way as information
transfer implies. Therefore, a measure involving some time-asymmetry
must be used. This has previously been done with the use of lagged cor-
relation [34]. The cross correlation lag function is used to assess the time
delay and to quantify the strength of a link mediated by a certain mech-
anism. Although this measure factors in a time-asymmetry, the measure
itself is still symmetric. A positive lag correlation implies that time-series
X has an in�uence on time-series Y in the future but also vice versa and
therefore it can be hard to interpret physically. Additionally, correlation
doesn’t imply causation [29]. The industrial revolution caused both a rise
in the number of births and the number of chimneys. If we were to just
look at time-series of the number of chimneys and births, we would falsely
assume that increasing the number of chimneys causes an increase in the
number of births as they are positively correlated. Therefore, the measure
used to interpret interactions between the time-series should be asym-
metric, and also only quantify unique information one variable has about
another. Granger’s formulation of causality encompasses this idea. He
states that if we want to test whether variable X causes variable Y , the
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�rst step would be to predict the current value of Y with all previous in-
formation, other than variable X. Then in a second step predict variable
Y with all previous information including X. If the second prediction is
judged to be better than the �rst one, then one can conclude thatX causes
Y . A measure to test for this Granger causality would be perfect in our
attempt at quantifying interactions between time-series. However, �nd-
ing such a measure is di�cult. It is unrealistic to be able to account for all
previous information, as the number of time-series in our system is �nite.
Additionally, previous measures such as the Granger causality test, or its
extension to non-linear dependencies, require models to be �t to the time-
series, and thus make assumptions about the underlying process. In order
to analyze interactions in the multivariate EEG data, I shall use tools from
information theory which I believe are perfectly suited for measuring this
form of causality.

2.2 From interactions to networks

Each time-series within the complex system represents a speci�c quantity
and can be viewed as a node. The quanti�ed interaction between each pair
of time-series can then be interpreted as an edge between the nodes. This
gives us a network representing dependencies in the system. Many com-
plex systems have been modeled as a network; such as the World Wide
Web, Social friendships and Power Grids, as a network representation of-
fers a powerful way of seeing the manner in which complex systems are
interconnected [31]. Network models of complex systems have shed light
on a variety of complex empirical phenomena, including the frequencies
of protein-protein interactions, the social causes of obesity and the propa-
gation of viruses through the Internet to name a few [31]. Looking at the
degree distribution, dynamics and the community structure of the net-
work as well as many other network analysis tools that have been devel-
oped, allows us to understand the complex system at a much deeper level
and how local pairwise interactions contribute to the global structure of
the system.
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3 Information Theory, Causality and PMIME

This chapter shall discuss the basic concepts of information theory such as
information, entropy and mutual information rate. Then transfer entropy,
which is based on these information-theoretic tools, will be explored as
well as its natural relation to Granger causality. Based on the strengths
and weaknesses of transfer entropy, a new improved practical measure is
introduced named PMIME which shall be the measure used for the EEG
causality analysis.

3.1 Information

In 1948 Claude Shannon introduced the concept of information in his pi-
oneering work ‘A mathematical theory of communication’ [36]. Shannon
information, as it is known, describes the amount of uncertainty or ran-
domness in a source signal.

De�nition 3.1. (Shannon information) LetX denote a set of stochastic
events and p(xi) the probability distribution of each xi ∈ X. The informa-
tion of xi is de�ned as the negative log value of the probability of xi :

I(xi) = −logp(xi).

The Shannon information describes the uncertainty of a single event.
When we want to describe properties between two or more events, we
use the joint, conditional and mutual information. Let X and Y be two
stochastic event sets.

De�nition 3.2. (Joint information) LetXY be a two-dimensional joint
event set. For any element xiyi ∈ XY , the joint information for the prod-
uct event xiyi is given by

I(xiyi) = logp(xiyi)

where p(xiyi) is the two-dimensional joint probability of xiyi .

De�nition 3.3. (Conditional information) Let xi and yj be elements
of X and Y respectively. The conditional mutual information of xi given
yj is de�ned as

I(xi | yj) = −logp(xi | yj)
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De�nition 3.4. (Mutual information) The amount of information an
event yj ∈ Y provides to another event xi ∈ X is de�ned as the mutual
information between xi and yj :

I(xi;yj) = log
p(xi | yj)
p(xi)

.

The joint information measures the uncertainty when all members of the
product events simultaneously occur. The conditional information gives
the amount of uncertainty of one event conditioned on another and the
mutual information measures the common uncertainty shared between
two events. These tools are very useful in describing single events and
their relationship. However, more often we are interested in describing
entire event sets. To do this we use entropy.

3.2 Entropy

Entropy measures the average uncertainty for an entire event set.

De�nition 3.5. (Information entropy) LetX be a set of stochastic events
and xi be an element in X. The information entropy of X is the expecta-
tion of I(xi):

H(X) = E[I(xi)] = E[−logp(xi)] = −
q∑
i=1

p(xi)logp(xi).

The information entropy describes the average amount of uncertainty of
an event set. If an event has zero probability, it has no contribution to the
entropy as by de�nition 0 · log0 = 0. For a discrete event set, entropy is
non-negative as each term in the summation is non-negative. Addition-
ally, entropy reaches its minimum when pi = 1 for some i and pj = 0 (if
j , i), and it reaches its maximum (H(X) = logn) for a uniform probabil-
ity distribution, i.e. pi =

1
n
, i = 1,2, ...,n.

De�nition 3.6. (Joint entropy) In the joint events set XY , the expecta-
tion of the joint information xiyj is de�ned as the joint entropy:

H(x,Y ) =
∑
XY

p(xiyj)I(yj | xi) = −
∑
XY

p(xiyj)logp(xiyj)
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De�nition 3.7. (Conditional entropy) Let XY be the joint stochastic
events set, the expectation of the conditional information I(y | x) is de-
�ned as the conditional entropy of Y on X:

H(Y | X) =
∑
XY

p(xiyi)I(yj | xi) = −
∑
XY

p(xiyj)logp(yj | xi).

Joint entropy is a measure of the average amount of information shared by
bothX and Y , whereas conditional entropy describes the average amount
of information remained in one event set providing the other.

3.3 Mutual information rate

De�nition 3.8. (Mutual information rate) Consider the arbitrary joint
events set XY , the mutual information rate is de�ned as the joint proba-
bility expectation of the mutual information I(xi;yj):

I(X;Y ) =
∑
XY

p(xiyj)I(xi;yj) =
∑
XY

p(xiyj)log
p(xi | yj)
p(xi)

=
∑
XY

p(xiyj)log
p(yj | xi)
p(yi)

when X and Y are mutually independent, I(X;Y ) = 0.

The mutual information rate measures the amount of information ex-
changed per unit time between the sets of stochastic events. If we have
many nodes in a network representing time-series data, the mutual in-
formation rate between each pair of nodes can be a powerful tool in ana-
lyzing the complex system and the interaction between nodes. However
mutual information rate cannot be used to determine the predominant
direction of information �ow given that it is a static, symmetric property.
In order to analyze dynamical properties such as driving and responding,
quantities based on transition probabilities have to be considered, leading
to the introduction of transfer entropy.
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3.4 Transfer entropy

Transfer entropy (TE) is an information-based causality measure, intro-
duced by Schreiber to describe the information transfer between coupled
systems [35]. A discrete process X, approximated by a kth order station-
ary Markov process, satis�es

p(xn+1 | x
(k)
n ) = p(xn+1 | x

(k+1)
n ) (3.1)

where x(k)n = (xn, ...,xn−k+1) is a k-dimensional delay embedding vector.
Extending the systemX to two systemsX and Y , the generalized Markov
property gives:

p(xn+1 | x
(k)
n ) = p(xn+1 | x

(k)
n , y

(l)
n ) (3.2)

which means that in the absence of information �ow from Y → X, the
state of Y has no in�uence on the transition probabilities of X. Trans-
fer entropy is de�ned by a Kullback entropy to evaluate the generalized
Markov property:

T EY→X =
∑

p(xn+1,x
(k)
n , y

(l)
n )log

p(xn+1 | x
(k)
n , y

(l)
n )

p(xn+1 | x
(k)
n )

(3.3)

TE can both be expressed in terms of conditional entropies and in terms
of mutual information rates.

T EY→X =H(xn+1 | x
(k)
n )−H(xn+1 | x

(k)
n , y

(l)
n ) (3.4)

and
T EY→X = I(xn+1;vn)− I(xn+1;x

(k)
n ) (3.5)

where vn = (x(k)n , y
(l)
n ) is the embedding vector for the past of both X and

Y . Therefore, TE can be viewed as an asymmetric extension to mutual
information rate which uses conditional probabilities to measure the in-
formation transfer between systems. Hence, transfer entropy can be in-
terpreted as the average uncertainty eliminated from xn+1 when the past
of Y is presented providing the past of X. In order to discount the pos-
sibility that another random variable Z drives both Y and X, the partial
transfer entropy (PTE) can be used. This can be expressed as:

P T EY→X |Z =H(xn+1 | x
(k)
n , z

(m)
n )−H(xn+1 | x

(k)
n , y

(l)
n , z

(m)
n ) (3.6)

where Z is a discrete process representing the rest of the system not ac-
counted for by X and Y and is approximated by an mth order stationary
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Markov process. PTE clearly incorporates the idea of Granger causality.
It provides a measure of the unique information contained in Y for the
prediction of X and thus is positive when Y Granger causes X. TE and
PTE have been used in a variety of applications from exploring informa-
tion �ow between �nancial time-series to providing feedback to improve
the performance of arti�cial neural networks [44][19]. However, TE and
PTE su�er from slow computation. With the same delay embedding with
embedding dimension m (and delay τ) for X and Y , T EY→X requires the
estimation of a joint probability distribution of dimension 2m+ 1 (m for
X, m for Y and 1 for the future of X). For PTE, when K variables are ob-
served, the dimension becomes Km+ 1, and eventually PTE will fail for
largem or K . This is the case in a lot of practical situations, including for
an EEG. Therefore, a measure that addresses dimensionality reduction is
required in our analysis. Such a measure was introduced by Kugiumtzis
and is called partial mutual information with mixed embedding [21].

3.5 Partial Mutual Information with Mixed Embedding

Let {xt, yt, z1,t, ..., zK−2,t}nt=1 be a multivariate time series of K variables
given by X,Y ,Z1, ...,ZK−2, and we want to estimate the e�ect of Y on
X conditioning on Z = {Z1, ...,ZK−2}. The future of X at each time step
t is represented by a vector of T feature values, xTt = [xt+1, ...,xt+T ]. A
maximum lag is set for each variable, e.g. Lx for X and Ly for Y . In our
EEG analysis, as all variables are the same type, we make the assump-
tion that the maximum lag, L, is the same for all variables. Let us denote
the set of all lagged variables at time t as Wt, containing the components
yt, yt−1, ..., yt−Ly ,xt,xt−1,xt−Lx , z1,t, ... and the same for the other variables
in the system with their range given by the maximum lag.

An iterative scheme is used to form a mixed embedding vectorwt ∈Wt

starting with an empty embedding vector, w0
t = ∅ [42]. In the �rst iter-

ation, the component in Wt being most correlated to x
T
t is found by the

K-nearest neighbors (kNN) estimate of mutual information. This means
w1
t = argmaxw∈Wt

I(xTt ;w), and we have w
1
t = [w1

t ]. In the second itera-
tion, the component in Wt \w1

t that gives the most information about xTt
is found. This is done by �nding w2

t = argmaxw∈Wt
I(xTt ;w | w1

t ), where
the conditional mutual information is again estimated by kNN. The mixed
embedding vector then becomes w2

t = [w1
t ,w

2
t ]. This progressive scheme
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continues until iteration j when the additional information of wjt is not
large enough. This is quanti�ed with the stopping criterion

I(xTt ;w
j−1
t )/I(xTt ;w

j
t) > A. (3.7)

Here, A ∈ (0,1) is a signi�cance threshold near 1. The empirical optimum
choice forA has been found to be 0.95, which not only allows the inclusion
of a new component in the embedding vector even if it contains only a
small amount of unique information about xTt but it also prevents false
positives [42]. The obtained mixed embedding vector wt can contain any
of the lagged variables X,Y ,Z1, ...,ZK−2. To test whether Y causes X we
look at how much of Y is contained in wt. Let us denote the components
of Y in wt as wy

t , for X as wx
t and for the other variables in Z as wz

t . To
quantify the causal e�ect of Y on X conditioned on the other variables in
Z , we de�ne partial mutual information with mixed embedding (PMIME)
as

PMIMEY→X |Z =
I(xTt ;w

y
t |wx

t ,w
z
t )

I(xTt ;wt)
. (3.8)

The normalization means PMIMEY→X |Z ∈ [0,1]. It is zero if there are no
driving components in the mixed embedding vector (wy

t = ∅), meaning
there is no direct causal e�ect from Y to X, and it is 1 if the mixed em-
bedding vector is totally dominated by the driving variable (wx

t =w
z
t = ∅).

The measure is of a very similar form to PTE, but in PTE the uniform delay
embedding vectors ofX, Y and Z are used and the delay parameters have
to be set. Therefore, PMIME addresses the issue of high dimensionality in
PTE and so will hopefully be a suitable measure for capturing the inter-
dependencies in an EEG. Software to compute PMIME has been written
for MATLAB [21]. Inputting K multivariate time-series over a speci�ed
length of time, will produce a K × K causal matrix with the (i, j) entry
indicating the causal strength from time-series, i to time-series j , where
i, j ∈ K .
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4 Networks and Community detection

This chapter shall introduce basic concepts from network theory such
as representation, directed networks and networks with an associated
strength between links. After this, an overview of community detection
methods within these networks shall be given followed by a description of
one of these methods known as the map equation. For the EEG analysis,
having constructed a directed network using PMIME, the map equation
is used to try and understand the �ow of information in the brain and
between persons.

4.1 Networks and representations

A network is simply a collection of connected objects. The objects are
known as nodes or vertices, and the connections between the nodes are
edges. A simple network cannot have edges connecting a node to itself
(self-edge) and there is no more than one edge between a pair of nodes.
On the other hand, a multi-network can have both self-edges and multi-
edges. In this thesis, only simple networks are considered. The nodes in a
simple network can be uniquely indexed by a list of integers, e.g. i stands
for the ith node, i = 1,2, ...,N where N is the total number of nodes. In
a simple undirected network, the link between nodes indexed by i and j
is represented by an unordered pair (i, j). Therefore, a simple undirected
network G = (N,L) can be speci�ed by the number of nodes N and a list
of unordered pairs, L. Additionally, a simple undirected network can be
presented by anN×N adjacency matrixA = (aij) with entries of the form

aij =

1 if there is a link between nodes i and j,
0 otherwise

(4.1)

Here, 1 denotes the existence of a link between nodes i and j and 0 repre-
sents the absence of such a link. The adjacency matrix of a simple undi-
rected network is symmetric with vanished diagonal elements. However,
in a lot of real-world networks such as the World Wide Web, Food webs
and Economic networks, the interaction between nodes i and j goes one
way and not the other. For example, in a food web, there is an edge be-
tween whales, i and plankton, j due to i eating j , however plankton do
not eat whales! So the edge is directed. These are known as directed
networks and need to be speci�ed slightly di�erently.
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4.2 Directed networks

A simple directed network G = (N,L) is a simple network consisting of
N nodes and a set of ordered pairs of nodes, L. The set of ordered pairs
of nodes, is a list of direct links, in which each (i, j) indicates a direct link
from node j to node i. A direct network can also be represented by a
N ×N adjacency matrix with entries

aij =

1 if there is a link from node j to i,
0 otherwise

(4.2)

The adjacency matrix of a simple directed network is asymmetric with
vanished diagonal elements. In many real networks, there is also a strength
of connection between nodes. In order to describe systems with this prop-
erty, we use weighted networks.

4.3 Weighted networks

As well as specifying links between nodes, a simple weighted network
additionally assigns each link a real number, i.e. a weight or strength. A
simple weighted network can be represented by assigning the elements
of the adjacency matrix as the weights of connections. For example, the
adjacency matrix of a simple weighted, directed network is given by

aij = w (4.3)

where w is the weight of the link from node j to i. Most frequently, w is
given a value of zero when there is no directed edge between the nodes.

4.4 Overview of community detection

Real-world networks are often extremely large and di�cult to visualize.
This can be seen with a network of the Internet in Figure 1. The mapping
consists of frequent trace-route style path probes, one to each registered
Internet entity. From this, the graph is built showing the paths to most
of the nets on the Internet. The challenge is to extract useful information
buried in the large amount of nodes and edges. We want to �nd tools that
can simplify and highlight important structures in these networks so that
we can understand their organization. Such tools are called community
detection methods and they are deigned to identify groups of strongly
connected nodes. These groups of strongly connected nodes are called
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communities, clusters or modules and are represented by di�erent colors
in the Internet network. Community detection in networks is challeng-
ing, and many algorithms have been proposed in the last few years to
tackle this di�cult problem. Most of these algorithms fall into three main
categories; Null models, block models and �ow models:

• Algorithms based on null models compare some measure of connec-
tivity within groups of nodes to the expected value in a proper null
model. Clusters are identi�ed as the sets of nodes where the connec-
tivity deviates the most from the null model. This is the procedure
for the commonly used Louvain method [10].

• Algorithms based on block models identify blocks of nodes with
common properties. Nodes that are assigned to the same block are
statistically equivalent in terms of their connectivity to nodes within
the block and to other blocks.

• Algorithms based on �ow models use the fact that networks, through
their edges, capture the �ow between components of a real system.
In these models, communities are de�ned as structures within the
network where �ow persists for a long time once entered. In this
thesis, the map equation, which is a �ow-based method, shall be used
to �nd community structure in the constructed network.

Figure 1: The Internet Network as found by Bell Labs during the Internet mapping
project [8]. Colors represent a community.
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4.5 The map equation

For most integrated systems, there is a �ow of some form; passengers
traveling among airports, money transferred between banks, signals trans-
mitted in the brain, and this �ow connects the components of a system
and generates their independence. Therefore it is natural, especially when
looking at information �ow in a complex system, to understand the sys-
tem’s behavior by looking at the dynamics on the network. This leads
to a �ow-based method, such as the map equation, seeming like a good
approach to capture the underlying communities that we wish to �nd.
The map equation, �rst introduced in [33], takes advantage of the duality
between �nding community structure in networks and minimizing the
description length of a random walker’s movements on a network guided
by the possibly weighted, directed links of the network. The sender wants
to communicate to a receiver about the movement on the network, and
for a given partition of communities, there is an associated information
cost for describing the dynamics. The map equation is designed such that
the description length of the random walker can be compressed if the net-
work has regions where the random walker tends to stay for a long time
[4]. Therefore, with a random walker as a proxy for real �ow, the map
equation is a direct measure of how well a given network partition cap-
tures modular regularities in the network. Regions in the network where
the the �ow tends to stay for long periods of time can be thought of as
communities and the map equation is able to capture the best partition of
the network to �nd these regions of concentrated �ow. For the interested
reader, [32] provides a more mathematical description of the map equa-
tion and the intricate details of how it is used to �nd community structure
in directed, weighted networks. Due to the map equation’s natural rela-
tion to information �ow and its previous success in �nding communities
in citation networks [32], the Infomap algorithm, which is based on the
map equation framework, shall be used in �nding communities in the di-
rected, weighted cross-brain networks that we produce from PMIME.
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5 Kolmogorov complexity and its approximation

This section discusses Kolmogorov complexity, a theoretical measure of
the randomness in a signal. Then, Lempel-Ziv complexity is introduced
and its practicality for approximating the theoretical Kolmogorov com-
plexity in a time-series. An extension of Lempel-Ziv complexity, called
permutation Lempel-Ziv is outlined, as well as why it may outperform
its predecessor. The permutation Lempel-Ziv complexity will be used as
a measure of the complexity at a local electrode in the EEG for the strict
and let-go modes. This will provide a description of the local functional
behavior of the brain during the musical performance and this could po-
tentially be di�erent in each mode.

5.1 Kolmogorov complexity

Kolmogorov complexity tries to answer the fundamental question: ‘what
is a random signal?’. Consider the following two strings

2222222222

8435427952

Intuitively, the second string seems random and the �rst does not. How-
ever, from the perspective of probability, both strings have the same prob-
ability of being chosen when we take a string of 10 digits fully at random
namely, each of them has probability 10−10. So probability does not ex-
plain the intuitive notion of randomness. To explain the intuition, Kol-
mogorov stated that less random sequences can be described with fewer
words than more random sequences [20]. For instance, the �rst string
can be described by ’repeat 2’ whereas the second string would need all
ten characters to describe - the string cannot be compressed. To quantify
this, the Kolmogorov complexity is the length of the shortest computer
program (in a predetermined programming language) that produces the
string as output. By the invariance theorem, the choice of programming
language or the model is not crucial to the complexity of the string [24].
However, for almost all strings, it is not possible to compute the exact
value of Kolmogorov complexity and so a variety of metrics have been
proposed in order to e�ciently approximate it [17].
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5.2 Lempel-Ziv complexity

The metric of complexity proposed by Lempel and Ziv (LZ) has been ex-
tensively used to solve information theoretic problems and has been ap-
plied to areas such as coding [16], data compression [45] and for the gen-
eration of test signals [41]. Recently, LZ has been applied extensively
in biomedical signal analysis as a metric to estimate the complexity of
discrete-time physiological signals. Alike in this thesis, LZ has been used
in the analysis of EEG signals. The LZ of the time-series of electrical ac-
tivity at electrodes was found to be signi�cantly higher in Schizophrenic
than healthy patients [12], and lower than a healthy test group for pa-
tients su�ering from Alzheimer’s disease with (p-value < 0.01) [15]. LZ
approximates the Kolmogorov complexity of a �nite sequence containing
a �nite alphabet. The alphabet refers to the di�erent numbers, letters or
symbols that the sequence contains. LZ links the complexity of the spe-
ci�c sequence to the gradual build up of new patterns along the given
sequence. It is computed by scanning the sequence S from left to right
and then increasing a complexity counter c(n) by one unit every time a
new subsequence of consecutive characters is encountered. An algorithm
for calculating LZ is as follows:

1. Let P andQ denote two subsequences of the sequence S = s(1)s(2)...s(n)
and PQ to the concatenation of P and Q. Additionally, let π denote
the operation of deleting the last character so that PQπ is equivalent
to PQ with a deleted end character. Moreover, let v(PQπ) denote
the vocabulary of all di�erent subsequences of PQπ. At the begin-
ning c(n) = 1, P = s(1),Q = s(2) and therefore PQπ = s(1).

2. In general, P = s(1)s(2)...s(r) andQ = s(r+1), then PQπ = s(1), s(2), .., s(r).
If Q belongs to v(PQπ) then Q is a subsequence of PQπ and is not
a new sequence.

3. Renew Q to be s(r + 1)s(r + 2) and see if Q belongs to v(PQπ) or
not.

4. Repeat the previous step until Q does not belong to v(PQπ). This
implies that Q = s(r + 1)s(r + 2)...s(r + i) is not a subsequence of
PQπ = s(1)s(2)...s(r+i−1). When this occurs, increase c(n) by one.

5. P and Q are then renewed to be P = s(1)s(2)...s(r + i) and Q = s(r +
i +1).
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The above procedure is repeated until Q is the last character. Applying
this algorithm to the sequence S = 0001101001000101 gives

0 · 001 · 10 · 100 · 1000 · 101

where dot products indicate points where P andQ are both renewed and
c(n) is increased as a new sequence is found. In this case c(n) = 6. This
complexity measure is dependent on the sequence length. To avoid this,
c(n) is normalized so that it describes the rate at which new sequences
are found rather than the number of new sequences. If the length of the
sequence is n and the number of di�erent symbols in the alphabet is α, it
has been proved that the upper bound of c(n) is given by

c(n) <
n

(1− εn)logα(n)
(5.1)

where εn is a small quantity and goes to 0 as n→∞ [23]. Therefore, in
general the upper bound of c(n) is

b(n) =
n

logα(n)
. (5.2)

The normalized LZ complexity C(n) can then be given by

C(n) =
c(n)
b(n)

(5.3)

and re�ects the rate of new patterns in the sequence. In order to practi-
cally implement the LZ measure on a discrete time-series signal, the tem-
poral sequence must be converted to a sequence with a �nite alphabet.
This is most often done by converting the time-series to a 0-1 signal with
the threshold determined by measures such as the mean, median or k-
means. For instance, with the popular LZCmean the mean value of the
time series is selected as Td . The binary sequence is then expressed as,

xi =

0 if s(i) < Td ,
1 otherwise

(5.4)

Converting the time-series to a binary sequence then allows the LZ com-
plexity measure to be applied. However, by converting the time-series to
a binary sequence, a lot of information in the original signal is lost. In this
thesis, the permutation LZ complexity will be adopted in order to reduce
some of the information lost when converting the time-series to a binary
sequence.
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Figure 2: The 6 di�erent possible motifs when the number of data points, m = 3.

5.3 Permutation Lempel-Ziv complexity

Permutation LZ uses order patterns to generate sequences with a �nite
alphabet. For instance, looking at a window with the �rst 3 numbers in
the time-series and their ordering in terms of size. There are 3! motifs,
i.e. ways or arranging the 3 numbers as shown in Figure 2. Therefore, the
�rst three numbers and their order can be described by a number between
1 and 3! = 6. The window is then shifted along the time-series by a pa-
rameter τ and the 3 numbers in that window are then described with an
integer in the same range. In this procedure there are two parameters, m
being the number of data points in each motif and τ determining the sam-
ple points spanned by each section of the motif. Using this procedure, the
time-series can be converted into a sequence with a �nite alphabet with
integer symbols ranging from 1 to m!. This should provide a sequence
that retains more information about the original signal than a conversion
to a binary sequence would. Once this sequence is generated, then the
LZ measure can be applied using the algorithm listed for the Lempel-Ziv
complexity. Permutation LZ has been found to be more sensitive to dy-
namical changes in the underlying signal than standard LZ and has also
been successful in detecting anesthesia states [1]. For this reason, the
measure shall be used for our complexity analysis on the EEG data.
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6 EEG analysis on music improvisation

6.1 Experimental setup

The music improvisation experiment was undertaken at the Data Science
Institute, Imperial College London on the 21 March 2017. Synchronized
EEG measurements were taken from three musicians; a �utist, pianist and
a singer, as well as four audience members during a musical performance.
The EEG recorders for each person, were set up according to the inter-
national 10-20 system and had 19 electrodes: Fp1, Fp2, F3, F4, F7, F8, C3,
C4, T7, T8, P3, P4, P7, P8, O1, O2, Fz, Cz, Pz. The electrodes represent
di�erent large brain regions, F: frontal lobe (attention and executive con-
trol), C: central lobe (sensory and motor function), P: parietal lobe (per-
ception, multi-sensory integration), O: occipital lobe (Visual processing).
Odd numbers represent locations on the left brain, while even numbers
stand for locations on the right. A reference electrode (CPz) was used,
so that each EEG signal was mono polar referenced to this site and ac-
tivity levels of the 19 sites could be compared relative to each other. The
sampling frequency of the data aquisition was 250 Hz.

During the performance, each piece was performed twice: once in
what the musicians described as a strict mode, corresponding to a pre-
pared rendition and once in a let-go mode, corresponding to an impro-
vised interpretation. To further clarify the di�erence between the modes,
the musicians in the strict mode were mainly focused on controlling tech-
nical precision, timing co-ordination, accuracy of the score’s details, avoid-
ing risks, whilst also giving a convincing performance. In the let-go mode,
the musicians played more freely, expressing themselves spontaneously
and putting less focus on accuracy of note playing. The order of the strict
and let-go modes for each piece was randomly varied by the musicians,
with the audience unaware of which version was being played. Two of the
audience members could both see and hear the performances, the other
two could hear but not see them. Additionally, within each pair, one par-
ticipant had a high degree of training in classical music, the other had a
low degree.
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6.2 Methods

Here, we aim to use PMIME to create a directed network of information
�ow between electrodes in multiple EEGs. This will give us a cross-brain
network which can then be analyzed. A complexity analysis will also be
used to quantify signals at an electrode scale.

6.2.1 Causality analysis

It was found that the Fp1, Fp2 and the Fz electrodes contained some anoma-
lous data. Therefore, these electrodes were removed from the data set
leaving time-series from 16 electrodes for each person. The EEG data from
all seven di�erent brains were then put together to form an 112 channel
(16 × 7) augmented data �le, one for the strict mode performance and
one for the let-go performance. The �le was edited such that all electrode
recordings were synchronized, forming a 63332 × 112 �le for the let-go
mode and a 63129 × 112 �le for the strict. These were then passed through
a 2Hz high pass �lter. The data �les were then split by constant size mov-
ing time windows with ∆T = 4s. Given that the sampling rate of the EEG
was 250 Hz, this meant that both �les now contained sixty-three 1000
× 112 blocks each corresponding to four seconds worth of synchronized
EEG measurements for all people. Each of these blocks were then individ-
ually inputted to the PMIME software [21], which generated a 112 × 112
causality matrix for each block. These causality matrices can be thought
of as a weighted, directed adjacency matrix with the value at position (i, j)
corresponding to the strength of interaction from i→ j and can therefore
be viewed as a network. Consequently, both the strict and let-go modes
will produce 63 cross-brain networks corresponding to interactions at 4
second intervals.

The PMIME software has various parameters which need to be set;
the maximum delay to search for components for the mixed embedding
vector (Lmax), the number of time steps T in the vector of feature val-
ues, xTt = [xt+1, ...,xt+T ], the number of nearest neighbors for the density
estimation of mutual information (nnei), the number of surrogates for a
signi�cance test (nsur) and the signi�cance level to test for the termina-
tion criterion of the mixed embedding scheme (α). These were all set to
their recommended values [21], namely Lmax = 5, T = 1, nnei = 5, nsur =
100 and α = 0.05.
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6.2.2 Cross-brain network analysis

Once the 63 causality matrices were found for the strict and let-go modes,
they were then turned into graphs using the networkx library in Python.
We now have a set of weighted, directed networks showing the informa-
tion �ow every 4 seconds between all electrodes in the system for both
modes. Some network back-boning was then done in order to reduce
noise. This was achieved by removing any links between nodes that have
a strength below a certain threshold. A histogram of the distribution of
weights in all the strict networks and another in all the let-go networks
was plotted as in Figure 3. Both these distributions are quite similar, al-
though in the strict mode the distribution is slightly wider and �atter. The
threshold was visually chosen to be 0.015 to remove links with a small
causal strength that may have only been found from noise in the EEG.
The network of the �rst 4 seconds in the strict-mode is shown in Figure
4 with the node color re�ecting the community in which the node is.

Infomap, an algorithm for the map equation, was then used to �nd
the communities in each of the directed, weighted networks. Plots of the
number of communities over time for both the strict and the let-go mode
can then be done from the results of Infomap. Additionally, as can be seen
at the �rst time-step for the strict mode, most of the nodes fall into one
community. Plots of how the size of the largest cluster varies over time
for both the let-go and strict modes were done in order to get a sense of
the connectedness of the network. A large maximum cluster size implies
that a majority of the nodes are similar and well-connected, whereas a
small one means that there are lots of signi�cant regions on the network
with restricted �ow.

(a) Strict. (b) Let-go.

Figure 3: Histogram of the weights in all of the causal matrices for each mode. The
number of bins is set at 100.
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Figure 4: A directed network indicating information �ow in the �rst 4 seconds of the
strict mode. The color of the node represents the community to which it belongs

To further get a sense of the similarity between communities, the en-
tropy of being in a particular community was calculated at each time step.
This was done by �nding the probability of being in community i (pi) and
calculating the entropy:

entropy =
∑
i

−pi log(pi) (6.1)

This gives a more �ne-grained picture than the size of the largest cluster.
More communities with more nodes cause a high entropy, whereas a sin-
gle large community implies a low entropy. The entropy was then plotted
over time for both the strict and let-go modes.

An important characteristic of improvisation, is that the risk-taking
and support are provided spontaneously by the musicians. Hence, one
may expect the musicians to be more actively engaged with each other
during the let-go mode. We hypothesis that in the let-go mode the neural
networks may be more widely-distributed between musicians. Therefore,
once we obtained the desired plots for the cross-brain network between
all people, we then looked at just the cross-brain network between the
musicians and repeated our analysis to see if our assumptions about dif-
ferences in interactions between the modes can be quanti�ed.

6.2.3 Complexity analysis

For the complexity analysis, di�erences in the let-go and strict modes
were analysed for each person individually. The EEG measurements for
a particular person in a particular mode, contain 16 time-series, one for
each electrode minus the three with anomalous data, and were partitioned
into blocks of lengthN . In our analysis, N was chosen to be 1000, so that
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Figure 5: The normalized autocorrelation function for the electrical activity at the
Flutist’s F3 electrode

we have blocks containing 16 time-series each of length 4s. The permu-
tation Lempel-Ziv complexity was then calculated for each time-series
within the block. This was then repeated for every block, giving a com-
plexity value for each electrode every 4s. The complexity values for each
electrode were then averaged at a particular time interval so that we get a
time-series of complexity values representing the mean complexity across
the EEG for that 4 second interval.

As mentioned, the permuation Lempel-Ziv complexity has two param-
eters;m being the number of data points in each motif and τ determining
the sample points spanned by each section of the motif. The parame-
ter τ was chosen using an autocorrelation function (ACF). ACF computes
the cross-correlation of a signal with itself and when the ACF decays to
e−1 of its peak value, the corresponding lag is found to be the optimal
value of τ [28]. By plotting the normalized ACF of multiple time-series,
one of which is shown in Figure 5, and �nding the average lag when the
ACF decays to e−1 of its peak value, we �nd that τ = 3 is optimal. In
the permutation process, m is usually recommended to be a value in the
range 3-7 [2]. When m < 3, there would be too few possible patterns and
the permutation would not make sense, while for m > 7, the computa-
tion would be too complex and expensive given m! possible values will
be scanned through at each window. Furthermore, to ensure that every
possible ordinal motif occurs in the signals of length 1000, the condition
m! ≤ 1000−(m−1)τ must hold. So, in order to be sensitive to the dynam-
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Figure 6: The e�ect size for di�erent numbers of motifs, m!. Stars indicate the level of
signi�cance of the e�ect size from a permutation test.

ics of the system and to economize computational time, a large value ofm
should not be selected. For the �utist, values of m between 3 and 6 were
all used with τ = 3 for both the strict and the let-go mode. The e�ect size
(Cohen’s d) for T-test between the time-series of complexity values in the
strict and let-go mode was calculated for eachm. The Cohen’s d between
groups 1 and 2 with means M1 and M2 and standard deviations SD1 and
SD2 is given by the equation

Cohen’s d =
M2 −M1

SDpooled
(6.2)

where

SDpooled =

√
SD2

1 + SD
2
2

2
(6.3)

The e�ect size gives a standardized di�erence between the means of the
complexity in the let-go and strict modes. In this case, a positive e�ect
size implies that the mean of the complexity in the let-go mode is greater,
and a negative e�ect size occurs when the mean is greater in the strict-
mode. The p-value of the e�ect size was then found using a permutation
test. The results are displayed in Figure 6. Them which showed the most
signi�cant change between the let-go and strict modes was selected, and
this corresponded tom = 3 which has been previously found to be a good
choice forN = 1000 [1]. Therefore, for the rest of the complexity analysis
we used m = 3 and τ = 3. The rest of the analysis was done in the same
manner as with the �utist. The e�ect size between the complexity time-
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series in the strict and the let-go modes was calculated, and then the p-
value of this was computed with a permutation test.

6.3 Results

Here we present our results regarding the analysis of the cross-brain net-
works, from which we managed to identify neural di�erences between
the two modes. Additionally, our complexity analysis shows di�erences
in the local behavior at electrodes when improvisation occurs.

6.3.1 Causality and network analysis

To analyze the pattern of interaction between musicians and audience
members, we have constructed a cross-brain network containing all the
people in our analysis. Additionally, we have also constructed a network
ignoring interactions with the audience to see if the musicians co-ordinate
more during improvisation than in a strict mode as we hypothesized.

How the number of communities changes over time for both these
cross-brain networks when the strict mode and let-go mode are being
performed is shown in Figure 7. The x-axis represents time where the
networks 1-63 correspond to 4 second intervals and the number of com-
munities is found for each network using the Infomap algorithm.

Figure 7: The number of communities as a function of time for the the two cross-brain
networks. The di�erences in mean between the two modes is also shown.
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Figure 8: Plots of the size of the largest community over time for the the two cross-brain
networks. A plot of the di�erences in mean between the two modes is also shown.

The �gure also indicates the di�erence between the mean number of com-
munities in each mode (Strict mean − Let-go mean) for the two di�erent
cross-brain networks as well as the level of signi�cance of this di�erence
calculated from a permutation test. In both the Musicians and All cross-
brain networks, the mean number of communities is higher in the let-go
mode. However, this is only signi�cant when taking into account all peo-
ple.

As previously discussed, the size of the largest cluster is a good mea-
sure of the connectedness of the network, i.e. how easily the �ow spreads
evenly throughout the network. Figure 8 shows how the size of the largest
cluster varies over time for the cross-brain networks in both modes. The
two di�erent networks exhibit very di�erent behavior. For the network
considering everyone, the size of the largest cluster is statistically higher
in the strict mode and there are lots of downward spikes in both modes
where there is a sudden drop in the size of the largest cluster.

On the other hand, looking at just the musicians, the mean of the let go is
signi�cantly higher and the spikes are upwards where there is a sudden
burst of connectivity between a large group of nodes.
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Figure 9: Plots of the entropy of the community structure over time for the the two
cross-brain networks. A plot of the di�erences in mean between the two modes is also
shown.

This analysis of community structure in both cross-brain networks de-
tects a di�erence between the act of improvisation and that of playing a
mechanical rendition.

To get a more �ne-grained idea of the dynamics on the network and
thus how information spreads between persons, the entropy of being in
particular communities is plotted over time for the di�erent cross-brain
networks in both modes. The results are shown in Figure 9. Again, the
inclusion of the audience into the cross-brain network seems to change
the dynamics of the information �ow to a large extent. The strict mode
has a lower entropy than the let-go mode in the network with everyone
and a higher entropy in the case of just the musicians and is statistically
signi�cant in both cases.
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6.3.2 Complexity analysis

In the complexity analysis, the permutation Lempel-Ziv complexity is cal-
culated for an individual at each electrode for a 4 second interval. The
complexity is then averaged across all electrodes at a particular interval,
giving a time-series of the average complexity value. An example of how
this complexity value changes in time is shown for the pianist in both
modes in Figure 10. The e�ect size between the mean of the time-series
of complexity in the let-go and strict modes is then calculated for all the
individuals with a positive e�ect size indicating a higher mean in the let-
go performance.
Figure 11 shows the e�ect size found for each person and with a level of
signi�cance from a permutation test. As can be seen, everyone apart from
Audience 3 shows an increase in complexity in the let-go mode. Addition-
ally, a lot of the individuals have a statistically signi�cant change between
the modes and so the complexity measure seems to be able to distinguish
neural di�erences when improvisation occurs.

Figure 10: The average complexity over all electrodes as a function of time in both the
strict and the let-go modes for the pianist

Figure 11: The e�ect size for the di�erent people between the means of the Let-go mode
−means in the Strict mode. Stars indicate the level of signi�cance of the e�ect size from
a permutation test.
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6.4 Discussion

We have constructed a cross-brain network involving everyone’s syn-
chronized EEG measurements during the concert, by using the causality
measure PMIME to specify interactions between pairs of electrodes in the
whole system. Our results show that on average in the let-go mode, there
is a larger number of communities, the size of the largest cluster is smaller
and the entropy is higher than it is during the strict mode. These results
are also all statistically signi�cant with p ≤ 0.05. Therefore, with our
causality and network analysis, we are able to distinguish an improvis-
ing state through the interactions between musicians and audience mem-
bers. A higher entropy in the let-go mode, suggests that the communities
are less distinguishable in terms of their size when improvising (they are
closer to a uniform distribution rather than having a single large cluster).
This means that in the let-go mode there are more equally sized pock-
ets of concentrated information �ow and not a large connected cluster
involving lots of functional parts in and between persons. This perhaps
suggests that information �ow between everyone is less diverse than in
the strict mode and there are similar groups of functional parts doing their
own tasks.

In the cross-brain network created from just interactions in the musi-
cians, the size of the largest cluster is greater in the let-go mode (p ≤ 0.05),
and the entropy is higher in the strict mode (P < 0.01). This suggests that
there is a high degree of connectedness for a large number of nodes in the
network. We hypothesized that we would expect the musicians to be more
actively engaged with each other in the let-go mode as a musician would
need to be very aware of the other musicians, reacting and co-ordinating
their performance. This seems to be con�rmed with our analysis as there
is a more diverse set of clusters in terms of size in the let-go mode. There
tends to be a large cluster so in the let-go mode the information �ow
smoothly moves over a large part of the system showing a high degree of
connectedness. Again we are able to di�erentiate between the modes of
playing from our causal and network analysis of the interactions between
the musicians. However, removing the audience members seems to give
the opposite community structure in the network. It is unclear exactly
why this is the case and further collaboration with Neuroscientists and
musicians will have to be done to understand the cause.
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In our complexity analysis we have calculated the average permuta-
tion Lempel-Ziv complexity over all intra-brain electrodes every 4 sec-
onds. The results show that there is a statistically signi�cant increase
in the complexity for the �utist (p ≤ 0.05), the singer (p ≤ 0.001), the
pianist (p ≤ 0.001), audience 2 (p ≤ 0.001) and audience 4 (p ≤ 0.05).
There is also an increase for audience 1 but not to a signi�cant level. The
only person involved in the concert where there is not an increase is for
audience 3, where there is very little change in complexity when impro-
visation occurs. Lempel-Ziv complexity is associated with awareness and
alertness, so it is unsurprising that the musicians all have an increase in
this complexity when improvising. Additionally, you would expect this
increase to be more signi�cant than with the audience, who are not hav-
ing to be aware and react in order to co-ordinate performance. This is the
case with our results where only 50% of the audience show a signi�cant
increase in complexity in the let-go mode whilst 100% of the musicians
show an increase. Interestingly, there is also an increase in complexity in
general for the audience in the let-go mode. This may suggest that the
state of mind during improvisation is communicable between the musi-
cians and the audience and could lead to a heightened quality of shared
experience.

Conclusions from the causality-network and the complexity analysis
need to be made with caution. There are only 7 people in our analysis
and di�erences in the let-go and strict mode are made for just one musi-
cal rendition which is approximately 5 minutes long. This small sample
space may lead to over-�tting conclusions and so in future studies more
participants could be employed and we could have both longer and more
pieces of music. Additionally, although we have removed the Fp1, Fp2
and the Fz electrodes due to seeing anomalies, the EEG data could be fur-
ther cleaned. This can be done by further �ltering and using independent
component analysis to remove artifacts such as blinking. This could pre-
vent our conclusions being made on the basis of noise in the signal and
future analysis should be done on thoroughly cleaned EEG.
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6.5 Conclusion

A cross-brain network between the musicians as well as a network be-
tween everyone in a concert have been constructed using PMIME to as-
sess the causal strength of all pairwise interactions between electrodes in
the synchronized EEG data. The community structure of these networks
has then be analyzed. Additionally, a complexity analysis has been done
looking at the randomness of the signal at local electrodes. These anal-
ysis have been done when the musicians play in a let-go mode and in a
strict mode. In both our complexity analysis and our causality-network
analysis, we have found neuronal di�erences between the musicians im-
provising and when they are playing a mechanical rendition of music. The
di�erences can be di�cult to interpret, but there is a quanti�able di�er-
ence in the information �ow in the whole system of people, information
�ow between musicians and the local complexity of signals at electrodes.
Further work in collaboration with Neuroscientists and musicians should
be done to understand the found di�erences and why including the au-
dience in the cross-brain network changes the community structure in
the let-go mode from one with on average high connectedness and a few
large communities to one with lots of equally sized communities. Addi-
tionally, repeat analysis should be done on a larger sample and with more
performed pieces in order to con�rm the �ndings. The method that we
have undertaken in terms of constructing a network of information �ow
between time-series and then analyzing the network can be extended to
other complex systems consisting of multivariate time-series such as cli-
mate and �nancial systems.
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